(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(node(s(n), cons(node(s(n181_0), ys68_0), xs4_0))) →+ f(node(n, cons(node(n181_0, cons(node(n, cons(node(s(n181_0), ys68_0), xs4_0)), ys68_0)), cons(node(s(n181_0), ys68_0), xs4_0))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [n / s(n), n181_0 / s(n181_0)].
The result substitution is [ys68_0 / cons(node(n, cons(node(s(n181_0), ys68_0), xs4_0)), ys68_0), xs4_0 / cons(node(s(n181_0), ys68_0), xs4_0)].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, select

They will be analysed ascendingly in the following order:
select < f

(8) Obligation:

TRS:
Rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons

Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))

The following defined symbols remain to be analysed:
select, f

They will be analysed ascendingly in the following order:
select < f

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol select.

(10) Obligation:

TRS:
Rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons

Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))

The following defined symbols remain to be analysed:
f

(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(12) Obligation:

TRS:
Rules:
f(node(s(n), xs)) → f(addchild(select(xs), node(n, xs)))
select(cons(ap, xs)) → ap
select(cons(ap, xs)) → select(xs)
addchild(node(y, ys), node(n, xs)) → node(y, cons(node(n, xs), ys))

Types:
f :: node → f
node :: s → cons → node
s :: s → s
addchild :: node → node → node
select :: cons → node
cons :: node → cons → cons
hole_f1_0 :: f
hole_node2_0 :: node
hole_s3_0 :: s
hole_cons4_0 :: cons
gen_s5_0 :: Nat → s
gen_cons6_0 :: Nat → cons

Generator Equations:
gen_s5_0(0) ⇔ hole_s3_0
gen_s5_0(+(x, 1)) ⇔ s(gen_s5_0(x))
gen_cons6_0(0) ⇔ hole_cons4_0
gen_cons6_0(+(x, 1)) ⇔ cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x))

No more defined symbols left to analyse.